
AD-R148 696 THE COLORED TICKET RLGORITHM(U) MASSACHUSETTS INST OF i/i
TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE
M FISCHER ET AL. AUG 83 MIT,'LCS/TM-269 N@9914-83-K-9i25

UNCLASSIFIED F/G 9/~2

-L. JL2V

wo
litii ' 4

I liiI lii * 1.8
1111 1111-4

MICROCOPY RESOLUTION TEST CHART
5 ATIO.A i@1MA1 U OF STAI DAMDS- 63-A

.. ?..:..-.,:.. ...-. .. .:,;.:,-,-:;:... -,,,-;.-.-.,-'.. :..::--'.-,.:.-,..,:-..:.. _............._......._.... ,..._,,

MASSACHUSETTSLABORATORY FOR INSTITUTE OFCOMPUTER SCIENCE TECHNOLOGY , *

MIT/LCS/TM-269 ."-" ,.."

o I THE COLORED TICKET ALGORITHM _ _

Michael Fischer -:-_--.-.

Nancy A. Lynch A

James Burns

Allan Borodin

000

August 1983

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

fohr pubha rtoe md goI
diobtbutm b WAM&L 84 4 12 10 041_

~~ .s~ .,. . -'...*N *

Unclassified
%.ECUAtITY CLASSIFICATION OF THIS PAGE (Whenau Date Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER GO TC4SO .RCPETSCTLGNME

?41T/LCS/TM-26 ~ ~ O~~~ qRCPETSAALGNBE
4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOU COVERED

Interim Research
The Colored Ticket Algorithm August 1983

6. PERFORMING ORG. REPORT NUMBER

________________________________ MIT/LCS/TM-269
7. AUTHOR(a) I. CONTRACT OR GRANT NUMSER(a)

Michael Fischer, Nancy A. Lynch, DARPA/DOD
James Burns and Allan Borodin N00014-83-K-0125

9. PERFORMING ORGANIZATION NAME ANC ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK(
AREA & WORK UNIT NUMBERS

MIT Laboratory for Computer Science
545 Techhology Square
Cambridge, MA 02139

11. CONTFOLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/Dept. of Defense August 1983
1400 Wilson Boulevard 13. NUMBER OF PAGES

14. MONITORI1N=GAGENCY NAME & ADDRESS(If different from Controllind Offie) 15. SECURITY CLASS. rof this report)

Information Systems Program Ucasfe

16. DISTRIBUTION STATEMENT (of tisl Report)

Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of IA. abstract anteredin Block 20. It differenti from Report)

Unlimited

IS. SUPPLEMENTARY Ne-ES

19. KEY WORDS (Continue on reverse aide It necesary and Identify by block numiber)

resource allocation, fault-tolerance, asynchronous systems,
shared variables, and test and set

20. ABISTR ACT (Con tinue on reverse side If necesary and Identify by block number)

Upper and lower bounds are proved for shared space
requirements for solution of a problem involving resource
allocation among asynchronous processes. The problem is to
allocate some number, k > 1, of resources, in an environment in
which processes can fail by stopping without. Allocation is
to be as FIFO as possible, subject to variations imposed by
the Dossibilitv of falrs

D I fr2." 1473 EDITION OF I NOV565 IS OIISOLETE
S'N O1O2.LF-014.6601 Unclassified

SECURITY CLASSIFICATION OF THI1S PACE (When Owe Entered)

..
%

...

The Colored Ticket Algorithm

Michael Fischer
Computer Science Department

Yale University
New Haven, CT 06517

Nancy A. Lynch

Massachusetts Institute of Technology Ac o
Laboratory for Computer Science NI R&

Cambridge, MA 02139 DI A
Unannounced
Just if icat i on- -

James Burns
Indiana University BY
Computer Science Distributicn/

Bloomington, IN 47405 Availabilit-7 Codes
jAvaiI nni/or

anid Dist Spc I al

Allan Borodin "
Department of Computer Science

University of Toronto
Toronto, Canada M5S 1A7

August, 1983

*Keywords: resource allocation, fault- tolerance, asynchronous systems, shared variables, and test

and set

0 1964 Maasachtisetis Institute of Technology, Cambridge, MA. 02139

eThts *orh *as su~ppo.id in part by the Office of Naval Research under Contract N00014-83-
K 0125 by OWe011K# of Army fle'ivch uinder Contract DAAG29-84-K-0058, and by the National '

* Scaent.. F coundatxxon iulehr Geieits MC.' 8306854 anid 830 01 ~DCR.

Abstract: "" ..

Upper and lower bounds are proved for shared space requirements for solution of a problem inv4Iving

resource allocation among asynchronous processes. The problem is to allocate some number, k 1, of

resources, in an environment in which processes can fail by stopping without warning. Allocation is to be as
FIFO as possible, subject to variations imposed by the possibility of failures.

1. Introduction
The critical section problem has been widely studied for its illustrative value in problems of synchronization

as well as for its practical application to real concurrent systems [BFJLP, CH1, CH2, Dil, EM, Kn, Lam, PF,

RP]. The problem is to devise protocols for each of several communicating asynchronous parallel processes

to control access to a designated section of code called the critical section. Such code might manipulate a

common resource, in which case access to the critical section corresponds to allocation of the resource. In

the simple case of a single nonsharable reusable resource such as a line printer or a tape drive, the two basic

properties desired of the acce3s policy are mutual exclusion and impossibility of deadlock. Mutual exclusion

means that two processes can never simultaneously be executing their critical sections. Deadlock is a

situation in which one or more processes are attempting to enter or leave their critical sections, but none of

; them ever succeeds. Finding appropriate protocols to insure these two properties is the critical section

. problem.

Two protocols comprise a solution. The trying protocol is the section of code that a process executes

before being admitted to its critical section, and the exit protocol is run when the process leaves its critical

section. Equivalently, the trying protocol allocates the resource corresponding to the critical section and the

exit protocol returns it to the system.

Various solutions in the literature differ with respect to the underlying model of computation, "fairness

properties" or permissible relative orders in which processes are admitted to their critical sections, time and

space complexity of the algorithms, and immunity to various types of permitted "failure" of components of the

system.

Burns, et al. [F3FJLPJ and Cremers and Hihbard [CH1, CH21 provide upper and lower bounds on the amount

of shared memory needed to insure certain fairness properties such as absence of lockout, bounded waiting,

and FIFO service order. The model used in those papers assumes a shared memory with a tebt-and-set

.1

...

2

primitive as the basic interprocessor communication mechanism. Rivest and Pratt [RP] and Peterson and

Fischer(PF] also analyze the memory requirements for such problems, but their model assumes a much more

limited form of access to the shared memory. Moreover, their algorithms are designed to continue to function

correctly even under repeated "failure" of any number of processes, provided only that a failed process

signal that it is no longer active. "Shutdown" is perhaps a more appropriate term for that I ind of failure, for it

carries no connotation of malfunction.

In this paper, we generalize the critical section problem to the case where some number k > 1 of processes

(but not more) are permitted to be simultaneously in their critical sections. Regarded as a resource-allocation

problem, we consider k identical copies of a non-sharable reusable resource, where each process can

request at most one copy of that resource. We use the test-and-set model of [BFJLP] and, as in that paper,

attempt to minimize the amount of shared memory used.

The exclusion property of the k-critical section problem, that at most k processes are ever simultaneously in

their critical sections, we call k-exclusion. To avoid degenerate solutions, we must also formalize the notion

that "it should be possible for as many as k processes to be simultaneously in their critical sections." We

interpret this to mean, roughly, that if fewer than k processes are in their critical sections, then It is possible

for another process to enter its critical section, even though no process leaves its critical section in the

meantime. We this property "avoiding k-deadlock".

A trivial generalization of a binary semaphore yields a system exhibiting k-exclusion and no k-deadlock.

Assume a shared variable, COUNT, which at any time contains the correct count of the number of processes

currently in their critical sections. A process wanting to enter its critical section performs a test-and-set

instruction on COUNT which, in one indivisible step, reads the value of COUNT, increments it if it was less

than k, and stores the result back into COUNT. The process then proceeds to its critical section if it saw the

count less than k, and it loops back and repeats the test otherwise (busy-waiting). A process leaving its

critical section simply decrements COUNT.

This algorithm imposes no fairness criteria on the order in which processes enter their critical sections, and

in fact it is possible that an individual process will always find the critical section "full" (i.e. COUNT = k)

whenever it happens to examine COUNT and therefore be "locked out" of its critical section. - -

-- - .- .- -- S - .

.. -..7

_. 3

3

Rather than devise new algorithms for the k-critical section problem with various fairness conditions, an

obvious approach is to try to reduce the k-critical section problem to a 1-critical section problem and then

apply known solutions to the latter problem. A solution of this kind is commonly used in banks for scheduling

people waiting for a teller. People entering the bank line up in a single queue. When one or more tellers

become available, the person at the head of the queue goes to any free teller. To see the reduction that is

illustrated by this simple example, think of the position at the head of the queue as a "resource". Only one

person has this resource at a time, and the queue itself serves to allocate that resource in first-in-first-out

(FIFO) order. Only the person holding the head-of-queue resource is permitted to go to a teller, so the order

of service by a teller is likewise FIFO. Such a reduction is generally possible, and the number of values of

shared memory increases by only a factor of (k + 1) over the requirement of the 1-critical section algorithm

used.

The bank algorithm has a rather subtle defect which becomes apparent when several tellers become

simultaneously free. If k > 2 tellers are free, one would like the first k people in line to all move

"simultaneously" to a teller, yet the algorithm requires them to file past the head of the queue one at a time. If

the person at the front of the line is slow, the k- I people behind him are forced to wait unnecessarily. In fact,

if the person at the front of the line "fails", then the people behind him wait forever and the system stops

functioning. In this case, one failure can tie up all of the system's resourcesl

We are thus led to generalize our requirements to include controlling the degradation of processing in the

.- event that a limited number of processes fail during the execution of their protocols.

Our notion of "failure" is quite different from the "shutdown" considered in [RP] and [PF]. We say a

process fails if it simply ceases to execute steps of its program when it in its protocol. However, unlike a

process which shuts down, a failed process does not announce to the world that it has failed. If it has not

really failed, but is merely delaying its next step, it will later resume execution as if nothing had happened.

Thus, there is no way for other processes to detect that a given process has failed: indeed, no finite portion of

a computation suffices to determine whether a process has failed or is just running very slowly. The

distinction can only be made in terms of the infinite behavior of the system - an active process eventually

takes another step, whereas a failed process does not.

Our interest in this kind of failure stems partly from the practical problems of building fault-tolerant

-- -- "*- --- - -

- .-... -.. -. -.- *,- ..'- - - . -, , -- * *... . -. - . - ,.- '.-- - . - -. .. .- .- .. ', .- ; . - ,- - . ,

-- ,',--.- - .r -, i--r-,,, *- -'7 1 . - . - - - .--- - .-- -- -- -- -s-- ---.- -

4

distributed systems and partly from the desire to understand the dependencies among processes competing

for entry to their critical sections. Each instance where one process must wait for another indicates a lack of

concurrency in the whole solution which, taken together, tend to cause the whole system to run at the speed

of the slowest process. Algorithms which continue to operate correctly even when a limited number of

processes fail cannot exhibit such simple dependencies. For example, it process A waits for process B to

take some action and process B fails, then process A will wait forever and make no further progress toward its

goal. Assuming that correct operation implies absence of lockout, then B's failure has caused the system to

fail by locking out A. Insisting that algorithms be robust in the face of a certain amount of failure gives us a

formal way of studying degrees of concurrency which in turn have implications for the running time of the

system.

At first sight, the concepts of robustness and fairness, say FIFO ordering, appear to be contradictory.

Robustness says that if one process fails in its trying protocol, the system must continue to function, so other

processes which later enter their trying protocols will enter their critical sections ahead of the failed process. -

That, however, violates usual definitions of FIFO ordering. One might simply exempt failed processes from

fairness constraints, but the resulting conditions are impossible to implement because of the fact that failure

cannot be detected by the system after any finite length of time. The problem is circumvented by defining the

fairness conditions not in terms of the order in which processes enter their critical sections but rather by the

order in which they become committed to enter their critical sections. By "committed", we mean that a

process no longer needs to wait for action by any other process before it can go into its critical section, nor

can the actions of other processes prevent it from entering its critical region. Intuitively, when a process

becomes committed, a copy of the resource is reserved for it, and actions of other processes are no longer

needed in order for the given process to complete its trying protocol. The key distinction between committing

and actual entry to the critical region is that a process might become committed passively as a result of some

other process changing the value of the shared memory, whereas entry to the critical region can take place

only by a positive action of the given process.

In this paper, we describe an algorithm, the Colored Ticket Algorithm, for solving the k.critical section

problem, and a corresponding lower bound result.

The algorithm is robust, commits processes in FIFO order, and uses O(N2) values of shared meomory,
assuming that k is fixed. The algorithm simulates the behavior that would be achieved by allowing the entire

, .

5

queue of waiting processes to reside in the shared variable. However, actually keeping the queue in the

shared variable would require a number of values exponential in N; our algorithm achieves the same effect

with a "distributed implementation" of the queue, which reduces greatly the shared memory requirements.

The algorithm satisfies strong robustness conditions, and we give an Q(N2) lower bound on the size of shared

memory for any algorithm these conditions.

In [FLBB1J, we consider other versions of the problem, using weaker robustness requirements. That paper

contains a k-cr tical section algorithm which achieves bounded waiting, satisfies the weaker robustness

requirements, and uses only O(N) values of shared memory, (The time requirements are worse than those of

the Colored Ticket Algorithm, however.) It also contains an algorithm which achieves FIFO order of

committing, satisfies the weaker robustness requirements, and uses only O(N(Iog N)c) values of shared

memory. (Again, time requirements are much worse than those of the algorithm in this paper.)

A preliminary version of the results of this paper, as well as the results of [FLBB1], appears in [FLBB2].

The reader is referred to [LF2] for two additional k-critical section algorithms. (Process failure is not
considered in that paper.) [Pet] contains results similar to those of [LF2].

2. A Formal Model for Systems of Processes
The model used in this paper is derived from that of [BFJLP]. It can also be regarded as a special case of

the general model of [LF1].

2.1. Processes and Systems

A process is a triple P'= (V,X,S), where

- V is a set of values for a shared variable,

- X is a (not necessarily finite) set of states, and

8 6 is a total function from V x X to V x X, the transition function.

A transition from (v,x) to 8(v,x) is a step of process P.

.• . o %° ** o . .. - ° . . . o . o, .°* - . ,°. .- . - Qo °- .. o . . * - . . . - . , -, o. -

6

We assume that the state set, X, is partitioned into disjoint subsets, or "regions": R, the remainder region,

T, the trying region, C, the critical region and E, the exit region, where R is assumed to be nonempty. We

assume that for every x E X and v E V, the following conditions hold.

(a) x E R U T implies 8(v,x) E T U C, and

(b) x E C U E implies 6(v,x) E E U R.

Thus, processes are deterministic. A process in its remainder region (resp. critical region), if it takes a step,
will either go directly to its critical region (resp. remainder region) or will enter its trying region (resp. exit

region). Once in the trying region (resp. exit region), a process will remain in that region until it progresses to

its critical region (resp. remainder region). We "abstract away" all program steps executed by a process

while in its remainder and critical regions, treating only the protocols explicitly.

For a natural number N, let [NJ denote 1 ,...,N). A system of N processes is a collection of N processes, P,

= (V, Xi,6.), 1 < i < N, all having the same shared variable. The remainder, trying, critical and exit regions of

process P are denoted by Ri, T, C, and Ei respectively.

If S is a system of N processes, then an instantaneous description (i.d.) of S is an N + 1-tuple, q

(v,x1 x N), where v is a value of V and xi is a state in Xi for all i. The functions 6i of the individual processes
have natural extensions to the set of i.d.'s of S, defined by 8 i(v,xl wxN) = (V"Xl,....x i-1 x',x i+l,.... xN), where

Si(v,xi) = (v',x'). We also use (ambiguously) the notation R, T1 , Ci and E, for the natural extensions of the

denoted sets of states to corresponding sets of i.d.'s. For example, (v,xlXN) .R1 if and only if x, E R1.

If S is a system of N processes, then any finite or infinite sequence of elements of [NJ will be called a

schedule for S. In a natural way, each schedule defines an "execution" of system S, when applied to any i.d.,

q, of S. If I = h1 ... hk is a finite schedule for S, then r(q,h) = Sh k(h (.h (q)...)) is the result of applying
k k-I Ischedule h to i.d. q. I.d. q' is reachable from q via schedule h provided r(q,h) q'. I.d. q' is reachable from q

provided q' is reachable from q via some finite schedule h.

'. "..

U'-..•* *...--- . -

7

2.2. Dependencies Among Processes

We have noted that processes are assumed to be always free to leave their remainder or critical regions on

their own, but the same is not true for their trying and exit regions. We next give several important definitions

which describe the possible dependencies among processes for making progress through their regions.

A process, PiV in a system of processes is C-able (resp. R-able) in q provided that r(q,i) E Ci (resp. R,). That

is, the process can proceed directly to its critical region (resp. remainder region) by taking one step. P is

C-always-able (resp. R-always-able) in q provided that for all finite schedules h not containing i, Pi is C-able

(resp. R-able) in r(q,h). Thus, the C-always-able (resp. R-always-able) i.d.'s are those in which a process is

poised, ready to enter its critical (resp. remainder) region whenever it next takes a step.

The properties described just above are of a somewhat different style from membership in the ordinary

regions. Namely, it is possible for process Pi to become C-able, etc. because of steps of other processes.

The C-always-able (resp. R-always-able) property can be thought of as describing passive belonging to the

critical (resp. remainder) region. It is useful to combine the two concepts of actual and passive belonging to a

region. Thus, we say that Pi is C-committed (resp. R-committed) in q provided that P is either in its critical

region or else is C.always-able (resp. in its remainder region or else is R-always-able) in q.

Note that it is possible for a process to reach its critical region (resp. remainder region) without first

becoming C-always-able (resp. R-always-able).

We say that P. is T-waiting (resp. E-waiting) in q provided that P is in its trying region but is not C-committed

(resp. in its exit region but not R-committed) in q.

2.3. Equivalence of Systems

Let S and S' be systems of N processes, with q and q' i.d.'s of S and S' respectively. We say that (S,q) and

(S',q') are equivalent provided that for every finite schedule h, all processes are in the same regions in r(q',h) - ."

and r(q,h). That is, for every h and i, we have R(r(q,h)) = R(r(q',h)), and similarly for T, C and E.

-. --.

.- ~.--*.-- -- ~ I~~*i-.iC - 1..........--s--- . .. - -""

8
>4

3. Properties of Systems
Because of the fact that k-exclusion is only interesting if there are more processes than resources, we

assume henceforth in this paper that N is strictly greater than k.

In this section, we state the properties which we would like a solution to the k-critical section problem to

satisfy. Throughout this section, let S denote a system of N processes, q an i.d. of S, and k a natural number.

3.1. k-Exclusion

Our first condition is the basic k-exclusion condition. We say that q violates k-exclusion if the number of
processes which are in their critical regions in q is strictly greater than k. S satisfies k-exclusion from q if no

* i.d. reachable from q in S violates k-exclusion.

3.2. Avoiding k-Deadlock

Our second condition describes our robustness requirements.

We say that the critical region is full in q provided that the number of processes which are C-committed in q

is at least k.

We say that an infinite schedule h exhibits k-deadlock from q provided that no process changes regions or

becomes committed in h applied from q, and at least one of the following two conditions holds.

(a) Some process is T-waiting, and the critical region is not full, in q.

(b) Some process is E-waiting in q.

S avoids k-deadlock from q provided there do not exist q' reachable from q and schedule h such that h

exhibits k-deadlock from q'.

3.3. FIFO Committing

Omi third and final condition describes the fairness property we require, FIFO committing. Intuitively,

viol,&ion of FIFO committing occurs if a process remains T-waiting while another process leaves its remainder
reginn and becomes C-committed. Similarly, a violation occurs if a process remains E-waiting while another

" _' _;- _,.,' -.. " ..-.. =. .. :.... . . . -..... i'," 2..,2. '...'....- - - - - - - - - - - - - --'2'2 ' .. ,2- -.-.-. ",- '"""

9

process leaves its critical region and becomes R-committed.

More formally, we say that S violates FIFO C-committing (resp. FIFO R-committing) from q provided there

exist q' reachable from q, schedule h and processes i and j such that i is T-waiting (resp. E-waiting) in q, i

does not become C-committed (resp. R-committed) during h applied from q', P is in its remainder region in q'

and P is C-committed in r(q',h). We say that S violates FIFO committing from q provided there S either

* violates FIFO C-committing or FIFO R-committing from q. S satisfies FIFO committing from q provided that S

does not violate FIFO comitting from q.

3.4. The Problem

We say that a system S satisfies the k-critical section problem from i.d. q provided that S satisfies k-

exclusion, avoids k-deadlock and satisfies FIFO committing, from q.

The following lemma will be used in demonstrating correctness of the Colored Ticket Algorithm.

Lemma 1: Assume (S,q) is equivalent to (S',q'). If S satisfies the k-critical section problem from
q, then S' satisfies the k-critical section problem from q'.

Proof: Straightforward. I

4. The Queue Algorithm
In this section, we describe a simple but inefficient solution to the k-critical section problem. This basic

algorithm, the Queue Algorithm, stores the entire queue of waiting and critical processes in the shared

- variable. A process in any of the firs(k positions of the queue is permitted to enter the critical region. This

- algorithm requires no nontrivial communication among processes, and in fact, each process need only make

- changes in the system i.d. at the moments of entry to the trying region and remainder region.

. 4.1. A Language for Describing Systems of Processes

In order to describe our algorithms, we require a suitable language. The algorithms are described in an

Algol-like, Pascal-like language similar to the one used in [CH2] but designed to make the translation into the

basic model transparent. Added to the usual sequential programming constructs are two synchronization

statements, lock and unlock. In addition, the construct waitfor C is used as an abbreviation for "while not C

do [unlock; lock]".

---------..........,. -i---
".".".".","....',' ..,'.". ': '..''..'': '. '.-" '..' ...""' .- .-" i'-. .' , ': ' ---" -"- "-.. .. . " - - -.' . -- -"..' - ." . . .

10

Lock and unlock statements always occur in pairs, an "unlock" followed immediately (syntactically) by a

"lock". Location counter values correspond to the points in the code immediately preceding each lock

statement. States of the process, P = (V,X,S), defined by a program, correspond to a particular location

counter value together with values for all the program's local variables. Transitions are defined as follows. If

the program is started with its location counter and local variable values described by state x, and v as the
value of the shared variable, and if the program is run according to usual sequential programming rules, it

might or might not reach an unlock statement. If it does, if x' is the state describing the resulting location

counter and local variable values, and if v' is the new value of the shared variable, then let 8(v,x) = (v',x'). If it

does not, then let 5(v,x) = (v,x). (In general, of course, this decision is not effective, but still gives a

well-defined answer. In actual execution, the values leading to the second alternative should never occur.)

4.2. The Queue Algorithm

We are now ready to present the Queue Algorithm. The shared variable contains only a single (generalized)

queue, called QUEUE. This queue admits two operations, ADD, which adds an element at the rear, and

REMOVE, which removes an element with a particular value from anywhere in the queue. Initially, QUEUE is

empty.

Queue Algorithm (Code for Process i):

while true do
[ADD(i, QUEUE);
waitfor i to be in one of the first k positions of QUEUE;
unlock; /* Critical Region / lock;
REOVE(i, QUEUE);
unlock; /* Remainder Region / lock]

The start state of a process has the location counter at the last lock statement of the program. The "initial"

i.d. consists of the given initialization of the shared variable and the start states of all processes. The regions

are defined by the location counter values: any state for which the location counter is at the first (resp. last)

explicit lock statement of the program is in the critical (resp. remainder) regiorn Any state for which the

location counter is at the lock statement implicit in the waitfor statement, is in the trying region. The exit

region is empty.
L.emma 2: The Queue Algorithm solves the k-critical section problem.
Proof: Straightforward. I

Wlhit! the Queue Algorithm satisfies all the correctness properties we want, keeping the queue in shared

.,.0ie° o'o,~.....''............. °............-o••

memory requires too much space to make the algorithm very interesting. Our goal is to find an algorithm

7 .-- ,-=-•
-

,i equivalent to the Queue Algorithm which keeps a lot less information in the shared variable.

Thus, our problem is to devise a space-efficient "distributed simulation" of the Queue Algorithm.

5. The Colored Ticket Algorithm
In this section, we present the main contribution of the paper, the Colored Ticket Algorithm. This algorithm

is very space-efficient, and is equivalent to the Queue Algorithm.

We begin with a presentation of an algorithm, the Uncolored Ticket Algorithm, which is intermediate

between the Queue Algorithm and the Colored Ticket Algorithm. The Colored Ticket Algorithm is then

described as a modification of the Uncolored Ticket Algorithm.

5.1. The Uncolored Ticket Algorithm

In this subsection, we present the Uncolored Ticket Algorithm. This algorithm is easily seen to be

equivalent to the Queue Algorithm. Its efficiency is poor, however: it requires an infinite number of values of

the shared variable.

We begin with an informal exposition which describes the operation of the algorithm.

We imagine an infinite sequence of numbered tickets to the critical region, starting with ticket number 1. A

ticket is issued to each process as it enters the system. No ticket is ever reused. From time to time, a ticket

- becomes valid. If a process holds a valid ticket, it can enter its critical region, and all tickets held by

- - processes in their critical regions are valid. At any time, exactly k tickets are valid; whenever there are fewer

than k processes in their combined trying and critical regions, some of the valid tickets will not currently be

issued.

In order to preserve FIFO enabling, tickets are validated in the same order as they are issued. Tickets are

Issued, starting with ticket 1, in numerical order. Initially, tickets numbered 1 to k are valid.

We imagine two pointers, ISSUE for the most recently issued and VALID for the most recently validated

ticket respectively, both traversing tickets in increasing order. (We introduce a "dummy ticket" numbered 0,

al

-I.

I °

-. 'I S S * S .U * - - - -

12

to which ISSUE points at initialization.) Either pointer may lead the other. When there are fewer than k

processes in the system, VALID leads ISSUE, having already validated all issued tickets, as well as the next

ticket(s) to be issued. When there are more than k processes, ISSUE leads VALID, indicating that there are

processes in their trying regions waiting to be allowed to enter their critical regions. In this case, all valid

tickets are issued, and there are also invalid issued tickets. When there are exactly k processes, the two

pointers coincide, indicating that the k active processes hold the k valid tickets. VALID can lead ISSUE by at

most k, while ISSUE can lead VALID by at most N - k.

S- Although FIFO enabling holds, some processes might get "skipped over" for actual order of entry to their

critical regions (if they fail or go slowly). Thus, valid tickets might get widely separated. However, at any time

"* when there are processes with invalid issued tickets, it is the case that the most recently validated ticket and

all invalid issued tickets are consecutive: starting with the valid ticket, they have consecutive numbers until
the ticket indicated by the ISSUE pointer is reached.

(Although we will not need to use it, there is a symmetric property to the above consecutivity property.

Namely, it there are valid tickets which are not issued, then the last issued ticket and all the non-issued valid

*: tickets are consecutive.)

*" The shared variable must contain enough information to indicate to each entering process what ticket it has

been issued, and to indicate to each process whether its ticket is valid. Our variable contains the following

information.

(a) ISSUE, (the number of) the ticket most recently issued.

(Initially, 0 appears.)

(b) VALID, the ticket most recently validated.

(Initially, k appears.)

Note that because of the consecutivity property, the shared variable alone suffices to determine the set of

invalid issued tickets. Therefore, if n process in its trying region has a ticket, then the value of the shared

variable allows that process to determine, at any time, whether its own ticket is valid.

,. **..*. S....* ~ * . ,

13

.4

! The code follows. All processes have the same program.

Uncolored Ticket Algorithm (Code for Process 1)

Local variable: TICKET

while true do
[/ Take the next ticket. */

TICKET : ISSUE + 1;
ISSUE : TICKET;

waitfor TICKET to be valid;
unlock; /* Critical Region 0/ lock;

/* Validat-e the next ticket. 0/

VALID :- VALID + 1;
unlock; /* Remainder Region / lock]

The start state of a process is defined by value 0 for TICKET and the location counter at the last lock
statement of the program. The "initial" i.d. q consists of the given initialization of the shared variable and the
start states of all processes. The regions are defined by the location counter values: any state for which the
location counter is at the first (resp. last) explicit lock statement of the program is in the critical (resD.
remainder) region. Any state for which the location counter is at the lock statement implicit in the waitfor
statement, is in the trying region. The exit region is empty.

Lemma 3: The Uncolored Ticket Algorithm is equivalent to the Queue Algorithm.
Proof: Straightforward. I

In spite of Lemma 3, the Uncolored Ticket Algorithm is not particularly interesting in its own right. This is
because the number of tickets is unbounded, so that the nimber of values taken on by the pointers in the

shaied variable is infinite.

5.2. The Colored Ticket Algorithm.'5
• .5

In this subsection, we show how to modify the Uncolored Ticket Algorithm so that only a bounded amount
of shared space is required. We do this by coloring and reusing the tickets.

In the Colored Ticket Algorithm, we use only a bounded number, (k + 1)N, of reusable tickets to the critical
region, with N tickets (numbered 1 to N) of each of k + I colors (numbered 0 to k). A ticket is issued to each

0~4***~5*5**~~ %~ *.**%*. . -. ~ 2 2 ::u.-::::

14

process as it enters the system, which it relinquishes upon leaving the system. No two processes are ever

simultaneously in possession of the same ticket. As before, from time to time, a ticket becomes valid. If a

process holds a valid ticket, it can enter its critical region, and all tickets held by processes in their critical

regions are valid. At any time, exactly k tickets are valid; whenever there are fewer than k processes in the

system, some of the valid tickets will not currently be issued.

As before, tickets are validated in the same order as they are issued. Tickets are issued, starting with ticket

1 of color 0, in numerical order within a color. After ticket N of a color has been issued, distribution resumes

with a different-colored ticket numbered 1. Initially, tickets numbered 1 to k of color 0 are valid.

As before, we imagine two pointers, ISSUE for the most recently issued and VALID for the most recently

validated ticket respectively, traversing tickets in the same order. Either pointer may lead the other. When

there are fewer than k processes in the system, VALID leads ISSUE, having already validated all issued

tickets, as well as the next ticket(s) to be issued. When there are more than k processes, ISSUE leads VALID,

indicating that there are processes in their trying regions waiting to be allowed to enter their critical regions.

In this case, all valid tickets are issued, and there are also invalid issued tickets. When there are exactly k

processes, the two pointers coincide, indicating that the k active processes hold the k valid tickets. VALID

can lead ISSUE by at most k, while ISSUE can lead VALID by at most N - k.

Although FIFO enabling holds, some processes might get "skipped over" for actual order of entry to their --

critical regions. Thus, valid tickets might get widely separated. However, at any time when there are

processes with invalid tickets, it is the case that the most recently validated ticket and all invalid issued tickets

are "consecutive" in the following sense. Starting with the valid ticket, they have consecutive numbers and

are all of the same color until ticket number N is reached; if this occurs, then the sequence resumes with

number 1 of the color of ISSUE, and continues with consecutive numbers of that color, until the ticket

indicated by the ISSUE pointer is reached.

(As before, a symmetric property holds. Namely, if there are valid tickets which are not issued, then the last

issued ticket and all the non -issued valid tickets are consecutive.)

In oider to insure that two processes never simultaneously hold the same ticket, the algorithm follows Ihe

policy that no ticket with number I ever gets issued or validated by a loading pointer if there is a ticket of the

-*°

15

same color currently issued or validated. The fact that it is always possible to select a new color when

needed follows from the consecutivity condition of the previous paragraph. Namely, assume first that ISSUE

is the leading pointer, is currently at ticket N of color c, and is ready to move to ticket 1 of some new color. By

the consecutivity property, all issued tickets which are not valid are of color c, and at least one valid ticket is

of color c. There are at most k - 1 other valid tickets, in the worst case each of a different color from each

other and from c. At most k colors are used in total, so there is at least one color with no ticket currently

* issued or validated. Next, assume that VALID is the leading pointer, is currently at ticket N of color c, and is

ready to move to ticket 1 of some new color. Then there are no invalid issued tickets, and at most k valid

tickets. It follows that there is some color having no valid tickets.

As before, the shared variable must contain enough information to indicate to each entering process what

ticket it has beer. issued, and to indicate to each process whether its ticket is valid. Our variable contains the

following information.

(a) ISSUE, (the number and color of) the ticket most recently issued.

(Initially, (N,k) appears.)

(b) VALID, the ticket most recently validated.

(Initially, (k,O) appears.)

(c) QUANT(i), 0 < i < k, the quantity of each color represented by the k valid tickets.

(Initially, QUANT(O) = k and all others are 0.)

N*'.; Considerable information can be determined from the value of the variable only. In particular, the variable

suffices to determine whether ISSUE leads VALID, or vice versa, or whether they coincide. If ISSUE leads

VALID, then the values of these two pointers together suffice to determine all the intervening tickets. Thus,

because of the consecutivity property, the shared variable alone suffices to determine the set of invalid issued

tickets.

If either VALID or ISSUE is a leading pointer and indicates a ticket with number N, then the dlared variable

P"

16

alone suffices to determine NEWCOLOR, a color different from those of all the valid and issued tickets.

Namely, NEWCOLOR can always be chosen to be some i for which QU.ANT(i) = 0. The reason this works was

sketched above.

It a process has a ticket, then the value of the variable allows that process to determine, at any time,

whether its own ticket is valid. This is because the shared variable suffices to determine the set of invalid

issued tickets.

We use the capabilities just described, where needed, in the program below. All processes have the same

program.

Colored Ticket Algorithm (Code for Process i)

Local variable: TICKET

while true do
[*Take the next ticket. 0/

TICKET : if ISSUE.NUMBER < N then (ISSUE.NUMBER + 1, ISSUE.COLOR)
else if VALID leads ISSUE then (1, VALID.COLOR)
else (1, NEWCOLOR);

ISSUE : TICKET;

waitfor TICKET to be valid;
unlock; /* Critical Region 0/ lock;

/* Validate the next ticket. 1

VALID := if VALID.NUMBER < N then (VALID.NUMBER + 1, VALID.COLOR)
else if ISSUE leads VALID then (1, ISSUE.COLOR)
else (1, NEWCOLOR);

/. Update quantity information. /

QOlANT(VAL[L.COLOR) QUANT(VALID.COLOR) + 1;
QtJANT(TfCKET.COLOR) QUANT(TICKET.COLOR) - 1;
unlock; /* Remainder Region */ lock]

The start state of a process is defined by an initial value of (1,0) for TICKET and the location counter at the

Ia~t lock statement of the program. The "initial" i.d. q consists of the given initialization of the shared variable

and the start states of all processes. The regions are defined by the location counter values: any state for

which the location counter is at the first (resp. last) explicit lock statement of the program is in the critical

•.-
, ,_'- '~~~~~~~~~~~~~~~~~~~~~~~.._

,,,,.: ...

':..--
.. ,... .,'.'.

...-................

...........

,...'....-............•.

.,

P 17

(resp. remainder) region. Any state for which the location counter is at the lock statement implicit in the

waitfor statement, is in the trying region. The exit region is empty.
Lemma 4: The Colored Ticket Algorithm is equivalent to the Uncolored Ticket Algorithm.
Proof: The equivalence is straightforward from the preceding discussion. I

Theorem 5: The Colored Ticket Algorithm solves the k-critical section problem. Also, if V is the
shared variable in the Colored Ticket Algorithm, then IVI is O(N 2). (The constant is (2k choose k)(k
+ 1)2.)

Proof: By Lemmas 3 and 4, the Colored Ticket Algorithm is equivalent to the Queue Algorithm.
The first conclusion follows by Lemmas 2 and 1.

The analysis is as follows. The variable contains two pointers, each of which can take on (k +
1)N values. The number of distinct values of the QUANT array is (2k choose k).

The foregoing bound is really quite surprisingly low. In a robust algorithm, it is necessary to allow for the

possibility that processes stop, and get "skipped over" in entry or leaving their critical regions. It seems, at

first, inevitable that the variable must record ticket values for skipped committed processes, so that those

processes can later know that they are committed. This seems to necessitate O(Nk) values for the shared

variable. The surprising observation is that committed processes can identify themselves without explicit

identification of their tickets in the shared variable. Namely, the two pointers in the variable contain sufficient

information to identify all the issued, invalid tickets. A process knows that its ticket is valid exactly if its ticket

is not in this set.

This algorithm can be regarded as carrying out a distributed simulation of a queue, which produces drastic
improvement in the shared memory required. Note, however, that this improvement does not incur a large

penalty in local space usage. The only space required by each process is enough for a location counter and

a single ticket value!

6. Lower Bound
In this section, we prove a lower bound on the number of values required by any algorithm which solves the

k-critical section problem.

First, some additional definitions are required. We say that P is C-independent (resp. R-independent) in q

provided that r(q,im) C C, (resp. R,) for some m > 1. That is, the process can proceed to its critical region

- ..-. ... - -

-7 .7-

18

(resp. remainder region) on its own, by taking some number of steps. We say that Pi is C-always-independent

(resp. R-always-independent) in q provided that for all finite schedules h not containing i, Pi is C-independent

(resp. R.independent) in r(q,h). Thus, the C-always-independent (resp. R-always-independent) i.d.'s are

those in which a process is always able to enter its critical (resp. remainder) region on its own, provided it

gets to take sufficiently many consecutive steps without interruption.

We require a construction and a lemma. Let k, N be natural numbers, with N > k + 2. Let S be a system of

N processes, and q an i. such that S solves the k-critical section problem from q. Choose any q' which is

reachable from q, with all processes in their remainder regions in q'. (The fact that S avoids k-deadlock can

be used to construct such a q'.) Fix i and j, with k < j < <i N - 1. Construct a schedule, h(i,j), as follows.

Starting at q', each of P p....Pk takes steps on its own, just until it enters its critical region. (The fact that S

avoids k-deadlock shows that this is possible.) Then each of Pk + 1.'...PN takes one step, going to its trying

region. Let PN'S state after its entry be denoted by x, for future reference. Then let P1 take steps on its own,

just until it returns to its remainder region, leaving one empty critical slot. Call the resulting i.d. q" for later

reference. Next, each of Pk+ 1..Pi in turn takes steps on its own, just until it returns to its remainder region.

(The k-deadlock avoidance property and the FIFO committing property are both used here, to show that this

is possible.) Finally, each of Pk1..... P takes one step, thereby entering its trying region once again. The

resulting i.d. is denoted q(i,j).

It is not hard to see that Pi + 1 is C-always-independent in q(i,j).

Lemma 6: Assume N > k + 2. Let S be a system of N processes, q an i.d., such that S satisfies
the k-critical section problem from q. For each i, j, let q(ij) be defined as in the preceding
construction. Then the shared variable has a distinct value in each q(i,j).

Proof: Assume the contrary, and consider two cases.

Case 1: V(q(i,j)) = V(q(i',j')) and i < i'

P'. is C.always-independent in qli',j'), hence is C-independent in q(i,j). That is, Pi, can take
soine number, in, of steps from q(i,j) and enter its critical region. We claim that the schedule h(i,j),
followed by m steps of P., *' violates FIFO committing from q. This is because P,. 1 goes from its
remainder to its critical region during this execution. while Pi+ 1 remains T-waiting. (If Pi were to

becone C-commilted during this execution, then a violation of k-exclusion would occur if this
execution were extended with a step of Pi +)

Case 2: V(q(i,j)) V(q(ij')) and j (j'

2-2.

19

Consider schedule h constructed as follows. Starting from q(i,j), P .. takes one step, thereby
entering the trying region. Then each of P ' P PP P in turn, takes sufficiently many
steps to return to its remainder region. Then Pj, + 1 is C-always-independent after application of h
to q(i,j).

Now consider the application of h to q(i,j'). It must be that P., + is C-independent in q=
r(q(i,j'),h). Thus, there is some number m such that P,+ 1 enters its critical region in the schedule
consisting of h(i,j') followed by h followed by m steps of Pj. + We claim that this schedule violates
FIFO com-nitting from q. Namely, P., 1 goes from its remainder to its critical region during this
execution, while P + , remains T.waiting. I

Now we prove the main lower bound result.

Theorem 7: Assume N > k + 2. Let S be a system of N processes, q an id. of S such that S
satisfies the k-critical section problem from q. Then IVI is U(N 2). More precisely, IVI > k(N-k-1
choose 2) = (1/2)k(N-k-1)(N-k-2).

Proof: rhe proof proceeds by induction on k.

Base: k =1

By Lemma 6, there are at least (N- 1 choose 2) > 1 x (N-2 choose 2) distinct values.

Inductive step: k > 1

By Lemma 6, there are (N. k - 1 choose 2) distinct values of the variable for the iad.'s q(ij), where
k <j < i < N - 2. Moreover, PN is not C-independent at any of these i.d.'s. That is, for every i and 1,
with k < 1 < i < N - 2, no finite number of applications of SN to the pair (V(q(i,j)),x) can put PN in its
critical region.

Now reconsider the construction preceding Lemma 6. Starting at q", each of Pk+ 1.. PN.1 takes
steps on its own until it returns to its remainder region. Call the resulting i.d. q"'. Then P is
C-always.independent in q". From q'", consider P, '..... N I as comprising a system, T, of N - 1
processes. Since S solves the k-critical section problem from q, it can be shown that T solves the
k-i -critical section problem from (the appropriate restriction of) q"'. Thus, by induction, the
numbor of values which can be taken on by T's variable is at least (k. 1)((N - 1) - (k -1) - 1 choose
2) = (k- 1)(N -k -1 choose 2). But PN is C-always.independenzt in q"', so that for each v which
can be taken on by the shared variable in id.'s reachable from q.' using only P, '.... PN- V some
finite number of applications of 5N to the pair (v,x) will put PN in its critical region.

Thus, the total number of values of V is at least (N - k- 1 choose 2) + (k- 1)(N - k- 1 choose 2) "
k(N -k - 1 choose 2), as needed.

o ""I

p %

p '

• I".

20

7. Summary and Open Questions
In this paper, we have described the k-critical section problem in general terms, and defined an extremely

robust version of the problem: equivalence with a particular (simple but space-inefficient) Queue Algorithm.

As our main result, we have presented an interesting new algorithm, the Colored Ticket Algorithm, which

solves the given version of the problem and uses only O(N 2) values of the shared variable. In contrast, we

have presented a lower bound proof which shows that any solution requires O(N2) values.

There is still a large gap between the constants in the upper and lower bounds. Both depend on k, but the

constant in the upper bound is exponential in k, while the constant in the lower bound is linear in k. It remains

to close this gap.

8. References
[BFjLPJ Burns, J., Jackson, P., Lynch, N., Fischer. M. and Peterson, G.

"Data Requirements for Implementation of N-Process Mutual Exclusion
Using a Single Shared Variable",Journal of the Association for Computing Machinery, Vol. 29, No. 1,

(January 1982), pp. 183-205.

[CH1] Cremers, A. and Hibbard, T.
"Mutual Exclusion of N Processors Using an O(N)-Valued Message Variable",
5th ICALP, Udine, Italy,
Springer Lecture Notes in Computer Sci'ence 62, (July 1978, pp. 165-176.

[CH2] Cremers, A. and Hibbard, T.
"Arbitration and Queueing Under Limited Shared Storage Requirements",
TR No. 83, Abtelung Informatik, Universitat Dortmund, (March 1979).

[Dill Dijkstra, E. W.
"Solution of a Problem in Concurrent Programming Control",
Communications of the ACM, Vol. 8, No. 9 (1965), p. 569.

[EMI Eisenberg, M.. and McGuire, M.
"Further Comments on Dijkstra's Concurrent Control Problem",
Communications of the ACM, Vol. 15, No. 11 (1972), p. 999.

[FLB~IlJ Fischer, M., Lynch, N., Burns, J. and Borodin, A.
"Resource Allocation with Immunity to Limited Process Failure",

...

21

Work in progress.

[FLBB2] Fischer, M., Lynch, N., Burns, J. and Borodin, A.
"Resource Allocation with Immunity to Limited Process Failure",
20th Annual Symposium on Foundations of Computer Science,
(October 29-31, 1979), pp. 234-254.

[Kn] Knuth, D.E.
"Additional Comments on a Problem in Concurrent Programming Control",
Communications of the ACM, Vol. 10 (1967), p. 137.

[Lain] Lamport, L.
"A New Solution of Dijkstra's Concurrent Programming Problem",
Communications of the ACM, No. 17 (1974), pp. 453-455.

[LF1] Lynch, N. A. and Fischer, M. J.
"On Describing the Behavior and Implementation of Distributed Systems", Thooretical
Computer Science, No. 13 (1981), pp. 17-43.

[LF2] Lynch, N. A. and Fischer, M. J.
"A Technique for Decomposing Algorithms Which Use a Single Shared Variable",
Journal of Computer and System Sciences", Vol. 27, No. 3, (December 1983,
pp. 350-377.

[Pet] Peterson, G.
"A New Solution to Lamport's Concurrent Programming Problem using Small Shared
Variables",
ACM Transactions on Programming Languages and Systems,
Vol. 5, No. 1, (January 1983), pp. 56-65.

[PF] Peterson, G. and Fischer, M.
"Economical Solutions for the Critical Section Problem in a Distributed System",
91h Symposium on Theory of Computing, (May 1977), pp. 91-97.

[RP] Rivest, R. and Pratt, V.
"The Mutual Exclusion Problem for Unreliable Processes: Preliminary Report",
17th Symposium on Foundations of Computer Science,
(October 1976), pp. 1-8.

V
'.1

C''
'S • -.-

1~. *..

OFFICIAL DISTRIBUTION LIST

1984

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy

Street

Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hopper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

%I.

*4, *

L'.*.,

FILMED

1-85

DTIC

